102 research outputs found

    The elimination of Trypanosoma brucei gambiense? Challenges of reservoir hosts and transmission cycles: Expect the unexpected

    Get PDF
    The World Health Organisation has set the goal for elimination of Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei gambiense (gHAT), as a public health problem for 2020 and for the total interruption of transmission to humans for 2030. Targeting human carriers and potential animal reservoir infections will be critical to achieving this ambitious goal. However, there is continuing debate regarding the significance of reservoir host animals, wild and domestic, in different epidemiological contexts, whilst the extent and duration of the asymptomatic human carrier state is similarly undefined. This paper reviews the status of the knowledge of latent infections in wild and domestic animal reservoir hosts towards the goal of better understanding their role in the transmission dynamic of the disease. Focus areas include the transmission cycles in non-human hosts, the infectivity of animal reservoirs to Glossina palpalis s.l., the longevity of infection and the stability of T. b. gambiense biological characteristics in antelopes and domestic animals. There is compelling evidence that T. b. gambiense can establish and persist in experimentally infected antelopes, pigs and dogs for a period of at least two years. In particular, metacyclic transmission of T. b. gambiense has been reported in antelope-G.p.palpalis-antelope and pig-G.p.gambiensis-pig cycles. Experimental studies demonstrate that the infectiveness of latent animal reservoir infections with T. b. gambiense is retained in animal-Glossina-animal cycles (antelopes and pigs) for periods of three years and human infectivity markers (human serum resistance, zymodeme, DNA) are stable in non-human hosts for the same period. These observations shed light on the epidemiological significance of animal reservoir hosts in specific ecosystems characterized by presently active, as well as known “old” HAT foci whilst challenging the concept of total elimination of all transmission by 2030. This target is also compromised by the existence of human asymptomatic carriers of T. b. gambiense often detected outside Africa after having lived outside tsetse infested areas for many years - sometimes decades. Non-tsetse modes of transmission may also play a significant but underestimated role in the maintenance of foci and also preclude the total elimination of transmission - these include mother to child transmission and sexual transmission. Both these modes of transmission have been the subject of case reports yet their frequency in African settings remains to be ascertained when the context of residual foci are discussed yet both challenge the concept of the possibility of the total elimination of transmission

    Eradication of human African trypanosomiasis? Don't forget the pigs!

    Get PDF
    Animal African Trypanosomosis (AAT) and Human African Trypanosomosis (HAT), caused by a protozoa of the genus Trypanosoma (section Salivaria), are both diseases of significant importance to sub-Sahara Africa. Several species of Trypanosoma are found in Africa but only two subspecies of T. brucei, are relevant to humans. They either cause the chronic (T. b. gambiense) or the acute (T. b. rhodesiense) form of human sleeping sickness, both with a fatal outcome if left untreated. While wildlife have long been known to be reservoirs for both HAT and AAT and show no clinical symptoms, infection in livestock, especially cattle, causes severe losses to local producers and are potential reservoirs for rhodesiense-HAT. Domestic pigs, too, are preferred hosts of Glossina spp. and have been reported to be potential reservoirs of both forms of HAT. Pigs are increasingly important as a source of income and food for smallholder livestock farmers in East Africa, especially in Uganda where both forms of HAT as well as AAT are endemic. Except for T. suis and T. brucei gambiense, all Trypanosoma species known to infect pigs have been reported from pigs in Uganda. The authors present findings from a review on the potential role of pigs as a livestock reservoir for HAT. We will discuss how and why infection with Trypanosoma spp. in pigs should be considered in differential diagnoses in clinically sick animals as well as in national HAT surveillance and eradication programs

    Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance

    Get PDF
    Trypanosoma brucei rhodesiense (Tbr) and T. b. gambiense (Tbg), causative agents of Human African Trypanosomiasis (sleeping sickness) in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors (TLFs), components of innate immunity in human serum that protect against infection by other African trypanosomes. In Tbr, lytic activity is suppressed by the Tbr-specific serum-resistance associated (SRA) protein. The mechanism in Tbg is less well understood but has been hypothesized to involve altered activity and expression of haptoglobin haemoglobin receptor (HpHbR). HpHbR has been shown to facilitate internalization of TLF-1 in T.b. brucei (Tbb), a member of the T. brucei species complex that is susceptible to human serum. By evaluating the genetic variability of HpHbR in a comprehensive geographical and taxonomic context, we show that a single substitution that replaces leucine with serine at position 210 is conserved in the most widespread form of Tbg (Tbg group 1) and not found in related taxa, which are either human serum susceptible (Tbb) or known to resist lysis via an alternative mechanism (Tbr and Tbg group 2). We hypothesize that this single substitution contributes to reduced uptake of TLF and thus may play a key role in conferring serum resistance to Tbg group 1. In contrast, similarity in HpHbR sequence among isolates of Tbg group 2 and Tbb/Tbr provides further evidence that human serum resistance in Tbg group 2 is likely independent of HpHbR functio

    Managing Tsetse Transmitted Trypanosomosis by Insecticide Treated Nets - an Affordable and Sustainable Method for Resource Poor Pig Farmers in Ghana

    Get PDF
    An outbreak of tsetse-transmitted trypanosomiasis resulted in more than 50% losses of domestic pigs in the Eastern Region of Ghana (source: Veterinary Services, Accra; April 2007). In a control trial from May 4th–October 10th 2007, the efficacy of insecticide-treated mosquito fences to control tsetse was assessed. Two villages were selected – one serving as control with 14 pigsties and one experimental village where 24 pigsties were protected with insecticide treated mosquito fences. The 100 cm high, 150denier polyester fences with 100 mg/m2 deltamethrin and a UV protector were attached to surrounding timber poles and planks. Bi-monthly monitoring of tsetse densities with 10 geo-referenced bi-conical traps per village showed a reduction of more than 90% in the protected village within two months. Further reductions exceeding 95% were recorded during subsequent months. The tsetse population in the control village was not affected, only displaying seasonal variations. Fifty pigs from each village were ear-tagged and given a single curative treatment with diminazene aceturate (3.5 mg/kg bw) after their blood samples had been taken. The initial trypanosome prevalence amounted to 76% and 72% of protected and control animals, respectively, and decreased to 16% in protected as opposed to 84% in control pigs three months after intervention. After six months 8% of the protected pigs were infected contrasting with 60% in the control group

    Differences between <i>Trypanosoma brucei gambiense</i> groups 1 and 2 in their resistance to killing by Trypanolytic factor 1

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; The three sub-species of &lt;i&gt;Trypanosoma brucei&lt;/i&gt; are important pathogens of sub-Saharan Africa. &lt;i&gt;T. b. brucei&lt;/i&gt; is unable to infect humans due to sensitivity to trypanosome lytic factors (TLF) 1 and 2 found in human serum. &lt;i&gt;T. b. rhodesiense&lt;/i&gt; and &lt;i&gt;T. b. gambiense&lt;/i&gt; are able to resist lysis by TLF. There are two distinct sub-groups of &lt;i&gt;T. b. gambiense&lt;/i&gt; that differ genetically and by human serum resistance phenotypes. Group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; have an invariant phenotype whereas group 2 show variable resistance. Previous data indicated that group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; are resistant to TLF-1 due in-part to reduced uptake of TLF-1 mediated by reduced expression of the TLF-1 receptor (the haptoglobin-hemoglobin receptor (&lt;i&gt;HpHbR&lt;/i&gt;)) gene. Here we investigate if this is also true in group 2 parasites.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology:&lt;/b&gt; Isogenic resistant and sensitive group 2 &lt;i&gt;T. b. gambiense&lt;/i&gt; were derived and compared to other T. brucei parasites. Both resistant and sensitive lines express the &lt;i&gt;HpHbR&lt;/i&gt; gene at similar levels and internalized fluorescently labeled TLF-1 similar fashion to &lt;i&gt;T. b. brucei&lt;/i&gt;. Both resistant and sensitive group 2, as well as group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt;, internalize recombinant APOL1, but only sensitive group 2 parasites are lysed.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; Our data indicate that, despite group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; avoiding TLF-1, it is resistant to the main lytic component, APOL1. Similarly group 2 &lt;i&gt;T. b. gambiense&lt;/i&gt; is innately resistant to APOL1, which could be based on the same mechanism. However, group 2 &lt;i&gt;T. b. gambiense&lt;/i&gt; variably displays this phenotype and expression does not appear to correlate with a change in expression site or expression of &lt;i&gt;HpHbR&lt;/i&gt;. Thus there are differences in the mechanism of human serum resistance between &lt;i&gt;T. b. gambiense&lt;/i&gt; groups 1 and 2.&lt;/p&gt

    Standardizing Patient-Derived Organoid Generation Workflow to Avoid Microbial Contamination From Colorectal Cancer Tissues.

    Get PDF
    The use of patient-derived organoids (PDO) as a valuable alternative to in vivo models significantly increased over the last years in cancer research. The ability of PDOs to genetically resemble tumor heterogeneity makes them a powerful tool for personalized drug screening. Despite the extensive optimization of protocols for the generation of PDOs from colorectal tissue, there is still a lack of standardization of tissue handling prior to processing, leading to microbial contamination of the organoid culture. Here, using a cohort of 16 patients diagnosed with colorectal carcinoma (CRC), we aimed to test the efficacy of phosphate-buffered saline (PBS), penicillin/streptomycin (P/S), and Primocin, alone or in combination, in preventing organoid cultures contamination when used in washing steps prior to tissue processing. Each CRC tissue was divided into 5 tissue pieces, and treated with each different washing solution, or none. After the washing steps, all samples were processed for organoid generation following the same standard protocol. We detected contamination in 62.5% of the non-washed samples, while the use of PBS or P/S-containing PBS reduced the contamination rate to 50% and 25%, respectively. Notably, none of the organoid cultures washed with PBS/Primocin-containing solution were contaminated. Interestingly, addition of P/S to the washing solution reduced the percentage of living cells compared to Primocin. Taken together, our results demonstrate that, prior to tissue processing, adding Primocin to the tissue washing solution is able to eliminate the risk of microbial contamination in PDO cultures, and that the use of P/S negatively impacts organoids growth. We believe that our easy-to-apply protocol might help increase the success rate of organoid generation from CRC patients

    Transcriptional Enhancer Factor Domain Family member 4 Exerts an Oncogenic Role in Hepatocellular Carcinoma by Hippo-Independent Regulation of Heat Shock Protein 70 Family Members.

    Get PDF
    Transcriptional enhancer factor domain family member 4 (TEAD4) is a downstream effector of the conserved Hippo signaling pathway, regulating the expression of genes involved in cell proliferation and differentiation. It is up-regulated in several cancer types and is associated with metastasis and poor prognosis. However, its role in hepatocellular carcinoma (HCC) remains largely unexplored. Using data from The Cancer Genome Atlas, we found that TEAD4 was overexpressed in HCC and was associated with aggressive HCC features and worse outcome. Overexpression of TEAD4 significantly increased proliferation and migration rates in HCC cells in vitro as well as tumor growth in vivo. Additionally, RNA sequencing analysis of TEAD4-overexpressing HCC cells demonstrated that TEAD4 overexpression was associated with the up-regulation of genes involved in epithelial-to-mesenchymal transition, proliferation, and protein-folding pathways. Among the most up-regulated genes following TEAD4 overexpression were the 70-kDa heat shock protein (HSP70) family members HSPA6 and HSPA1A. Chromatin immunoprecipitation-quantitative real-time polymerase chain reaction experiments demonstrated that TEAD4 regulates HSPA6 and HSPA1A expression by directly binding to their promoter and enhancer regions. The pharmacologic inhibition of HSP70 expression in TEAD4-overexpressing cells reduced the effect of TEAD4 on cell proliferation. Finally, by overexpressing TEAD4 in yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ)-knockdown HCC cells, we showed that the effect of TEAD4 on cell proliferation and its regulation of HSP70 expression does not require YAP and TAZ, the main effectors of the Hippo signaling pathway. Conclusion: A novel Hippo-independent mechanism for TEAD4 promotes cell proliferation and tumor growth in HCC by directly regulating HSP70 family members

    Genomic analysis of focal nodular hyperplasia with associated hepatocellular carcinoma unveils its malignant potential: a case report.

    Get PDF
    Background Focal nodular hyperplasia (FNH) is typically considered a benign tumor of the liver without malignant potential. The co-occurrence of FNH and hepatocellular carcinoma (HCC) has been reported in rare cases. In this study we sought to investigate the clonal relationship between these lesions in a patient with FNH-HCC co-occurrence. Methods A 74-year-old female patient underwent liver tumor resection. The resected nodule was subjected to histologic analyses using hematoxylin and eosin stain and immunohistochemistry. DNA extracted from microdissected FNH and HCC regions was subjected to whole exome sequencing. Clonality analysis were performed using PyClone. Results Histologic analysis reveals that the nodule consists of an FNH and two adjoining HCC components with distinct histopathological features. Immunophenotypic characterization and genomic analyses suggest that the FNH is clonally related to the HCC components, and is composed of multiple clones at diagnosis, that are likely to have progressed to HCC through clonal selection and/or the acquisition of additional genetic events. Conclusion To the best of our knowledge, our work is the first study showing a clonal relationship between FNH and HCC. We show that FNH may possess the capability to undergo malignant transformation and to progress to HCC in very rare cases

    Evolutionary Conservation of Infection-Induced Cell Death Inhibition among Chlamydiales

    Get PDF
    Control of host cell death is of paramount importance for the survival and replication of obligate intracellular bacteria. Among these, human pathogenic Chlamydia induces the inhibition of apoptosis in a variety of different host cells by directly interfering with cell death signaling. However, the evolutionary conservation of cell death regulation has not been investigated in the order Chlamydiales, which also includes Chlamydia-like organisms with a broader host spectrum. Here, we investigated the apoptotic response of human cells infected with the Chlamydia-like organism Simkania negevensis (Sn). Simkania infected cells exhibited strong resistance to apoptosis induced by intrinsic stress or by the activation of cell death receptors. Apoptotic signaling was blocked upstream of mitochondria since Bax translocation, Bax and Bak oligomerisation and cytochrome c release were absent in these cells. Infected cells turned on pro-survival pathways like cellular Inhibitor of Apoptosis Protein 2 (cIAP-2) and the Akt/PI3K pathway. Blocking any of these inhibitory pathways sensitized infected host cell towards apoptosis induction, demonstrating their role in infection-induced apoptosis resistance. Our data support the hypothesis of evolutionary conserved signaling pathways to apoptosis resistance as common denominators in the order Chlamydiales
    corecore